
Case Study

Tuning a Fast and
Frequently Executed

SQL

One of the top 3 ƘŜŀǾƛŜǎǘ {v[ǎ ƛƴ ŎǳǎǘƻƳŜǊΩǎ ŜƴǾƛǊƻƴƳŜƴǘ
was a fast statement (average execution of 0.013 sec)
executed 1.5 million (!) times each day.

Obviously, due to its massive executions, even a small
improvement in its execution should yield a huge
performance improvement to it total resource
consumption, and that is what I wanted to established.

!ŦǘŜǊ L ŜȄŀƳƛƴŜŘ {v[Ωǎ ŜȄŜŎǳǘƛƻƴ Ǉƭŀƴ ŀƴŘ ǳǎŜŘ ƛƴŘŜȄΣ L ŦƻǳƴŘ
that the columns order of the index is not effective,
therefore I have changed columns order, and managed to
ƛƳǇǊƻǾŜ {v[Ωǎ ǇŜǊŦƻǊƳŀƴŎŜΦ

Average execution went down from 0.013 sec to 0.005 sec =>
2.6 times faster!

!ǎ ŀ ǊŜǎǳƭǘΣ ǎƛƴŎŜ ƛǘ ǿŀǎ ŜȄŜŎǳǘŜŘ ŦǊŜǉǳŜƴǘƭȅΣ {v[Ωǎ ƻǾŜǊŀƭƭ
resource consumption went down dramatically.

SQL text

Frequently executed SQL, executing
1.5M times each day, with average
execution of 0.013 sec.

SQL is mostly activated
during day time

Up to 175k execution in
an hour

46% of SQL activity comes from
Index Scans on TAB1_INX3

31% of SQL activity come from
fetching the data from table
TAB1 itself (select *)

(2) Index TAB1_INX3 on TAB1(COL_B,
COL_A). COL_A is very selective: has
5.25M distinct values. COL_B is not
selective: has only 236 distinct values.

(1) When examining the SQL we can
see that :
1. Where clause is: col_a = :1
2. Order By clause is on col_b

(3) Since index is build with COL_B as the first column, and COL_A
only as the second column, Oracle chooses to scan TAB1_INX3
index using skip scan, then it access TAB1 to fetch SELECT star.
hōǾƛƻǳǎƭȅΣ ǎƛƴŎŜ ǘƘŜ {v[ƛǎ ŀǎƪƛƴƎ άcol_a = :1έΣ ŀƴŘ ǎƛƴŎŜ /h[ψ! ƛǎ
very selective, Oracle will benefit more from an index which has
COL_A as its first column.

At 10:15 a new index TAB1_INX6 is created on
TAB1 (COL_A, COL_B).
Since 10:15 ǿŜ Ŏŀƴ ǎŜŜ ŀ Ŧŀƭƭ Řƻǿƴ ƛƴ {v[Ωǎ
resource consumption

Since 10:15, we see reduced
average execution time of this SQL

While we see reduced resource
consumption and average
execution time of this SQL,
execution counts remains the
ǎŀƳŜ ҐҔ ƛƳǇǊƻǾŜŘ {v[Ωǎ
performance

New execution plan which uses
TAB1_INX6

Old execution plan which used
TAB1_INX3

Old execution plan: 0.013 sec
New execution plan: 0.005 sec
=> SQL is running 2.6 times faster.

SQL is now using INDEX RANGE SCAN
on the new created index TAB1_INX6

(2) Index TAB1_INX6 on
TAB1 (COL_A, COL_B)

DB OPTimize
Oracle Performance Tuning & DBA Consulting

www.dboptimize.co.il
merav@dboptimize.co.il

http://www.dboptimize.co.il/

