
Case Study

Adjusting Schema to

Application Needs

or
Beyond SQL Tuning ïpart 2

Application was constantly running a very heavy
SQL hour after hour day after day. Each
execution took 35 minutes on average. Since
each execution took so long, only 20-70
executions were able to run each day.

By adjusting schema to application needs and
then rewriting this SQL, execution went down to
1 sec, and SQL was able to executed 25k times
a day.

Heavy overload on the instance as well as on
machine and disks was stopped. SQL
performance was improved dramatically,
allowing huge increase in application capacity
and productivity.

SQL original text

Original SQL, with average

execution time 35 minutes !!!

Sometimes average

execution even climes

up to almost an hour

Since execution is very long, only

several dozens of executions

manage to run each day

This heavy SQL is

mostly waiting on IO

When examining SQL behavior over one day

period, we can see that this SQL is running all

day long (with a small break at night).

Moreover, in each hour it is waiting 60 minutes

for IO.

89% of SQL activity is due to

heavy sequential IO on index

T1_INX1
This inline view is the source

of the problem

This inline view is the source

of the problem

Table T1 is very big. It has 146M

rows, occupying 2.1M blocks (8k

each).

Index T1_INX1 on (ID, SEQ) has

585k blocks (8k each).

Oracle first needs to build the inline view which

requests id, max(seq) for each id. To do that

oracle is performing FULL SCAN on index

T1_INX1 (ID,SEQ). Index T1_INX1 has 585k

blocks (8k each). This operation is very heavy.

SQL performance cannot benefit here from Count

stopkey (rownum < 100).

Index T1_INX1 on (ID, SEQ) has

585k blocks (8k each).

After a short time examining this SQL I knew that
tuning capabilities were very limited. I had to speak
with the application to fully understand the logic
behind it.

It appeared that every time application was doing
something on id, a new row was inserted into table
T1 with id and max(seq) + 1. I have also found that
application was mostly interested in max(seq) for
each id, but didnôt hold this value anywhere.

It was clear to me that the way schema was designed
simply didnôt match application needs.

This is when I knew that schema design must be
changed. There has to be a table holding max(seq)
for a given id, and this change would surly lead to
performance boost.

Therefore I have created a new table T1_MAXSEQ (ID
number, SEQ number), with unique index on (ID,SEQ).

Now, something has to keep this table updated and fully
match values in table T1.

I found that there was a before insert trigger on T1,
responsible to set the correct value of SEQ to max(seq)
+ 1 for any given ID.

I have update this trigger to also insert a new row into
T1_MAXSEQ when a new ID is inserted to T1, and
update an existing row to SEQ+1 for an existing ID.

Schema change (new table and trigger update) was
minimal and transparent to the application. All they
needed to do was to rewrite the SQL so that it will now
join T1 with T1_MAXSEQ instead of using inline view to
find max(seq) for every IDs.

New SQL should look like that:

Original Text:

SELECT é
FROM T1 s,

(SELECT max(max(seq)) over (partition by id order by id) maxseq,
id

FROM T1 s2
WHERE seq is not null
GROUP BY id) maxresults

WHERE s.id = maxresults.id AND
s.seq = maxresults.maxseq AND
s.col_a = 0 AND
s.col_b = :1 AND
s.col_c < :2 AND
s.col_d = :3 AND
rownum < 100

Changed Text:

SELECT é
FROM T1 s,

T1_MAXSEQ maxresults
WHERE s.id = maxresults.id AND

s.seq = maxresults.seq AND
s.col_a = 0 AND
s.col_b = :1 AND
s.col_c < :2 AND
s.col_d = :3 AND
rownum < 100

Now, Letôs see how those changes have influenced on SQL
performance and behavior.

Using a join with the new table

T1_MAXSEQ instead of inline

view with analytic function

Rewritten text includes only the join

with the new table T1_MAXSEQ.

Inline view was removed.

Average execution of the rewritten text

went down from 35 minutes to 1 sec.

indeed, a huge performance

improvement.

Since SQL is now able to run rather fast, it manage

to have 25k executions a day (compare to several

dozens before the change), therefore we can see

that productivity and capacity have increased

dramatically also. Much more work can be done

within same amount of time.

Change was applied on

April 17th

When examining SQL behavior over one day period,

we can see that this SQL no longer run all day long.

Application is able to finish its work in a short time,

then stops till next day. By that we manage to release

a considerable amount of overload and IO requests

from the whole instance, disks and the machine itself.

Oracle is using the small new

index T1_MAXSEQ (16k blocks)

as the outer table of the nested

loop, and access the huge table

T1 in the inner loop, using Index

Range Scan on T1_5IX. Since

there is no need here to build the

inline view prior the join, oracle

can now benefit from applying

ñCount Stopkeyò (due to rownum

< 100)

Index T1_MAXSEQ_1IX on

T1_MAXSEQ (ID, SEQ) has only 16k

blocks (8k each).

